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The Joule Metric

Public Authorizations
PL 95-91, “Department of Energy Organization Act”
PL 103-62, “Government Performance and Results Act”

0.1 Metric Statement

0.1.1 Joule Metrics

The U.S. Office of Management and Budget (OMB)Y] oversees the preparation
and administration of the President’s budget, evaluates the effectiveness of
agency programs, policies and procedures, assesses competing funding de-
mands across agencies, and sets the funding priorities for the federal govern-
ment.

OMB has the power of audit and exercises this right annually for each fed-
eral agency. According to the Government Performance and Results Act of 1993
(GPRA), federal agencies are required to develop three planning and perfor-
mance documents:

1. Strategic Plan: broad, three year outlook

2. Annual Performance Plan that is incorporated into the annual budget re-
quest: focused, one year outlook of annual goals and objectives; “what
results can the agency produce for the taxpayers money?”

3. Performance and Accountability Report: an annual report about the past

fiscal year performance; “what results did the agency produce for the
taxpayer’s money?”

OMB uses its Performance Assessment Rating Tool (PART) to perform evalu-
ations. PART has seven worksheets for seven types of agency functions. The
function of Research and Development (R&D) programs is included. R&D pro-
grams are assessed upon the following criteria:

e does the R&D program perform a clear role?

e has the program set valid long term and annual goals?

1 http:/ /www.whitehouse.gov/omb
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e is the program well managed?
e is the program achieving the results set forth in its GPRA documents?

In FY2003, the Department of Energy Office of Science (DOE SC) worked di-
rectly with OMB to come to a concensus on an appropriate set of performance
measures consistent with PART requirements. The scientific performance ex-
pectations of these requirements reach the scope of work conducted at the na-
tional laboratories. The Joule system emerged from this interaction. Joule en-
ables the chief financial officer and senior DOE management to track annual
performance on a quarterly basis. Joule scores are reported as “success, goal
met” (green light in PART), “mixed results, goal partially met” (yellow light in
PART), and “unsatisfactory, goal not met” (red light in PART). Joule links the

DOE strategic planf] to the underlying base program targets.

Zhttp:/ /www.er.doe.gov/about/Mission Strategic.htm
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0.1.2 OASCR’s FY08 Joule Goals

The Office of Advanced Scientific Computing Research (OASCR) has the fol-
lowing two annual measures that it tracks quarterly:

1. (SC GG 3.1/2.5.1) Focus usage of the primary supercomputer at the Na-
tional Energy Research Scientific Computing Center (NERSC) on capabil-
ity computing. Percentage of the computing time used that is accounted
for by computations that require at least 1/8 of the total resource. FY08:
time used is at least 40%

2. (SC GG 3.1/2.5.2) Improve Computational Science Capabilities: Average
annual percentage increase in the computational effectiveness (either by
simulating the same problem in less time or simulating a larger problem
in the same time) of a subset of application codes. FYO08: efficiency measure
is > 100%

Asserting compliance with these metrics is a critical hurdle each fiscal year
for the success of DOE’s open science computing effort. This document presents
the results of the effectiveness of the computational science capability.

3 http:/ /www.sc.doe.gov /ascr/About/about.html
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0.1.3 Quarterly Tasks Related to sc GG 3.1/2.5.2

This is a year long effort requiring quarterly updates. The general outline of
tasks for exercising the software metric are presented by fiscal quarter here.

Q1 Tasks (deadline: Decemeber 31 )

Identify a subset of candidate applications to be investigated on DOE SC su-
percomputers. Management (DOE SC and laboratory) decides a short list of
applications and computing platforms to be exercised. The Advanced Scien-
tific Computing Advisory Committee (ASCAC) approves or rejects the list. The
Q1 milestone is satisfied when a short list of applications and machines is ap-
proved.

Q2 Tasks (deadline: March 31 )

Problems to study on the target machines are determined. The science capabil-
ity and computational performance of the implementation are benchmarked
on the target machines for the defined problems, problem instances. The Q2
milestone is satisfied when benchmark data is collected and explained. In the
case that an application is aiming to achieve a new result, the Q2 milestone is
satisfied by providing a detailed discussion of current capability, a discussion
of why the capability is insufficient, and a description of the new capability
being developed.

Q3 Tasks (deadline: June 30 )

The application software is enhanced for efficiency, scalability, science capabil-
ity, etc. The Q3 milestone is satisfied when the status of each application is
reported at the Q3 deadline. Corrections to Q2 problem statements are submit-
ted during this quarter.

Q4 Tasks (deadline: September 30 )

Enhancements to the application software continue as in Q3. The enhance-
ments are stated and demonstrated on the machines used to generate the base-
line information. A comparative analysis of the Q2 and Q4 data is summarized
and reported. The Q4 milestone is satisfied by asserting that the enhancements
made to the application software are in accordance with the efficiency measure
and type of enhancement -efficiency, scalability, or new result.
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0.2 FYO08 Results

(SC GG 3.1/2.5.2) Improve Computational Science Capabilities: Average annual per-
centage increase in the computational effectiveness (either by simulating the same prob-
lem in less time or simulating a larger problem in the same time) of a subset of applica-
tion codes. FY08: efficiency measure is > 100%

Each application is discussed and the problems benchmarked are described in the
respective application sections -the long write-ups. A brief description of the machine
used for the benchmarks is given. A summary of measured results is followed by sub-
sequent subsections on results and analysis of the measured results per application, and
a section on tools and analysis to orient the reader.

0.2.1 FYO08 Target Machine: j aguar . ccs. ornl . gov

The Cray XT4 cluster, Jaguar, at Oak Ridge National Laboratory’s (ORNL) National
Center for Computational Sciences (NCCS) was used to exercise OASCR’s FY08 Joule
software metric.

Jaguar has a total of 7,832 XT4 compute nodes. The compute nodes are operated by
the Compute Node Linux (CNL) software -a variant of Linux. Each compute node is
a single-socket, quad-core (Budapest) 2.1 GHz AMD Opteron (TM) processor (75W att)
with 8 GB of unbuffered memory, 2 MB of shared L3 cache, 512 KB L2 cache per core,
and 64 KB instruction and 64 KB data L1 caches per core. Of the 7,832 sockets, 932
have 667 MHz DIMMs and 6900 have 800 MHz DIMMs. In the best case, local memory
bandwidth is ~ 12.8G B/second per node.

Jaguar has 112 input / output (i/0) and login / service nodes. Each of these is
a 2.6 GHz dual-core AMD Opteron (TM) chip with 8 GB of memory per node. The
i/o0 and service nodes are running a variant of SuSE Linux. Approximately 600 TB are
available in the scratch filesystems and support massive i/o parallelism through the
Lustre filesystem software.

All nodes are linked by HyperTransport (HT) to Cray’s proprietary SeaStar2+ chips
which are used to construct a 3d-torus communication network between nodes. There
are 6 switch ports per Cray SeaStar2+ chip and each port has bandwidth 9.6GB/s. The
best case bandwidth between the compute node and the SeaStar2+ interconnect chip is
6.4GB/s. Thus, the injection bandwidth is half this, or 3.2GB/s.

For further information, the NCCS websitd] describes the system and its software
stack and is sufficiently detailed for the purposes of this report. For information on the
Cray XT4 platform see
http:/ /www.cray.com/Assets/PDF/products/xt/CrayXT4Blade.pdf. For chip specific
information on the single socket 1000 series see
http:/ /www.amd.com /us-en/Processors/Productinformation/0,,30_-118_8796_15226,00.html.

0.2.2 Summary of Results

The measured results are interpreted against a weak scaling model with the aim to
satisfy the language of the metric, “simulating a larger problem in the same time.” It is
not generally the case that the applications are defined by a single parameter or that
the physical scaling of the problem parameter(s) will yield a change in computational
complexity linearly related to the computational complexity of the original problem
(ideal weak scaling). However, usually an analysis can be made that projects the lin-
ear increase in computational complexity for the application to an affiliated change in

problem specific parametersﬂ The essential feature of scaling various parameters of a

4http:/ /www.nccs.gov /computing-resources/jaguar/
5See section[[IZ4] for a detailed example.
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problem is to focus the analysis or improve the resolution of the computed results.

Technically, the program binary is the algorithm for the problem on the target ma-
chine and the computational complexity of each problem instance can be deduced di-
rectly by monitoring the values of the various program counters for the various func-
tional units activated during program execution. In other words, the complexity of the
problem is defined by the required resources and the work conducted to actually exe-
cute it. This measure of work is fairly basic from the hardware perspective and can be
derived from system observables such as number of processes PEs (1-1 with cpu-core
count in this study) dedicated to executing the program, execution time T'I M E, total
number of instructions I N S executed]], magnitude of the memory demand in BYTES,
etc.

Overview. Before discussing the individual application benchmarks, the aggre-
gated machine event information collected while executing the Q2 and Q4 benchmarks
is presented in tables[llPl] and compared in table[B]]. This approximates the total com-
putational complexity to execute the original and scaled set of FY08 benchmarks -all on
Jaguar. The interpretation is that the aggregated data reveals total satisfaction with the
weak scaling metric from the hardware event perspective. That is, the scaled FY08 problem
set computed 3.7623 times the number of instructions (3.953 times the floating point
operations) with 3.8869 times the number of processes in .9998 percent of the time it
took to compute the original problem set. So, the Q4 problem set is ~ 4.X larger than
the Q2 problem set and executes on ~ 4X more processes than in Q2 and terminates in
the same (actually less) time as the Q2 problem set. The impression is that the applica-
tions scale linearly on Jaguar and this is essentially true for the carefully crafted studies
made in FY08. The insight gained owing to the increased information is described as
a highlight in this summary, whereas the context and significance are devloped in the
detailed descriptions of each application respectively.

If it is confusing, please note that some of the applications were also improved for
efficiency or simply performed better from the machine perspective when executing a
larger problem.

Application DCA++ GYRO PFLOTRAN
Metric time / disorder configuration timesteps / second / process time / dof / PE
Problem Q2 Ngis = 64,Nc = 16,N; = 150 4 = 30,20 timesteps 64.8 M DOFs, 201 flow, transport steps
Hardware Used Q2 7808 PEs 4608 PEs 4000 PEs
Walltime Q2 25339 s 69.01s 2594 s
Instructions Q2 5.1805e17 8.8854e14 2.2222e16
FLOPs Q2 4.6270el7 2.8701e14 1.2898e15

Table 1: Q2 FY08 Joule Software Summary of Benchmark Data.

0.2.3 DCA++ analysis

The two-dimensional (2D) Hubbard model is explored with the Dynamical Cluster Ap-
proximation (DCA) in conjunction with the Hirsch-Fye QMC (HF-QMC) algorithm.
The approach in these simulations is to solve the quantum many-body problem at the
atomic and nano-scale exactly with QMC, and to account for the macroscopic length
scales within a mean-field approximation by self-consistently and coherently embed-

®The instruction set is not to be confused with basic operations that are defined in the language
of the instruction set of the chip. For instance, in a single cycle, a single cpu-core (1 PE) on Jaguar
can compute 4 double precision mathematical operations (fused multiply and add).
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Application DCA++ GYRO PFLOTRAN
Metric time / disorder configuration timesteps / second / process time / dof / PE
Problem Q4 Ngis = 256,Ne = 16,N¢ = 150, = 40,20 timesteps 129, 635, 520DOFs , Q2 stepping
Hardware Used Q4 31232 PEs 24576 PEs 8000 PEs
Walltime Q4 23791 1248.58 s 2958.36 s
Instructions Q4 1.93e18 5.5680e16 5.0374el6
FLOPs (4 1.8126€18 1.9856e16 2.8603e15

Table 2: Q4 FYO08 Joule Software Summary of Benchmark Data.

TOTALS Q2 4 ratio (Q4 : Q2)
> Walltime | 28002.01s | 27997.94's .9998
>  PFEs 16416 63808 3.8869
> Instructions | 5.4116el7 | 2.036el8 3.7623
> FLOPs 4.6427e17 | 1.8353el8 3.953

Table 3: FY08 Joule software summary of aggregated Q2 and Q4 benchmark
data.

ding the cluster solution into an effective medium. In the limit of infinitely large clus-
ters, the DCA/QMC recovers the exact solution.

One must investigate models that include disorder to analyze physical effects con-
tributing to the behavior of high-Tc supercondutors. The total number of disorder con-
figurations Ng;s is proportional to 2Ne where N, is the number of cluster sites.

The benchmarks are intended to show the scaling of the disorder configurations
that are accessible during a fixed wall clock time with the number of available compute
nodes. The problem is representative of production runs, but the number of Green’s
function measurements has been reduced to a number that allows the timing runs to
finish in approximatly fixed walltime. The ability to weakly scale to larger numbers of
disorder representations will enable one to obtain the disorder dependence of the su-
perconducting transition temperature with increasingly better statistics as the available
machines grow in size.

The following parameters were used for the Hubbard model parameters in both the
Q2 and Q4 DCA ++ benchmarks.

e Number of sites: N. = 16
Number of time slices: Ny = 150

Hubbard U: U € {0.5, 1.5} randomly chosen for a disorder configuration.
e Number of selfconsistent measurements: 20
e number of warm-up steps: 40

The number of disorder configurations was increased from Ng;s = 64 in Q2 to
Nais = 256 in Q4. This allows the determination the time to execute each disorder
configuration ¢4;s.

During the time measurements the calculation of self energies was excluded since
this is a fixed amount of computation independent of the number of selfconsistent mea-
surements and a production run will require ~ 10 times the measurements performed
during the benchmark runs.

Performance data for the Q2 and Q4 runs is presented in table[[LZJ] and the ratios
of the data in table[lLZ3]. One concludes that the DCA++ disorder study scales almost
as the ideal linear case.
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Np PEs INS FLOP Walltime
Q2 | 64 7,808 | 5.1805el7 | 4.627el7 25339's
Q4 | 256 | 31,232 1.93¢18 1.8126e18 | 23791s

Table 4: DCA++. Performance results for the Q2 and Q4 disorder configuration
scaling benchmarks.

Observable | Ratio( Q4 : Q2)
Np 4
Walltime .9389
PEs 4
Instructions 3.725
FLOP 3.91

Table 5: DCA++. Q4 to Q2 benchmark data ratios for the disorder configuration
scaling exercises.

The significance of the scalability of the software over the number of disorder con-
figurations is that one can investigate the transition to a superconducting state with
d-wave symmetry. The order parameter that signals a transition to this state is given by

AL 4 Zg(RO)cj?U’chRO,l , (1)
RO
where g(R%) = cos R) — cos R is a d-wave form-factor. In linear response theory, the
pair-field susceptibility formed from this order parameter

B
Py = / dr(T-Aq(1)A}(0)) 2)
0
diverges at the transition temperature 7 to the d-wave superconducting state.

Using the Bethe-Salpeter equation, the pair-field susceptibility may also be written
in terms of a particle-particle vertex function I'??

Py =Pj + PiT"P,. ®)

Here, P? and I'’P are matrices of size NL x NL, where N is the number of lattice
sites and L the number of Matsubara-frequencies, P is the pair-field susceptibility of
the non-interacting part of the model and the right hand side contains an implicit sum
over the matrix elements. In the DCA, the vertex function I'?? is approximated by its
corresponding cluster quantity which is a smaller matrix of size N.L x N. L. This matrix
is calculated from the cluster pair-field susceptibility which is measured in the HF-QMC
process in the last DCA iteration. Since Eq. (IZ) can be written as

Py

Py=—9 _
T 1Py’

)

one can conveniently determine instabilities by calculating the eigenvalues and eigen-
vectors of the pairing matrix I'?? PYie., solving

o ST KPR ) (KT) = Aada(K). ©)
(& K/
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The susceptibility diverges when the leading eigenvalue A, crosses one which deter-
mines T.. The symmetry of the ordered state is then given by the K dependence of the
corresponding eigenvector ¢, (K).

At low temperatures the leading eigenvector has d,2_,2-symmetry. The leading
eigenvalue is shown as a function of temperature in Fig.[ll

1.3 T T
du=0.00 =—+—
dU=0.25 +=—s—

12+ dU=0.50 +—s— 1

11¢ R

(0]
3 1
= | i
g i
g ¥
.% 09 i
? | '
T 08¢t |
g {

H

0.7 s |

06 |
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KT

Figure 1: DCA++. The leading eigenvalue \; of the Bethe-Salpeter equation,
Eq. I8, calculated on a 16-site cluster for U; = 4t(1 + &dU), where &; is a
random number with value =1 for three different values of disorder.

In the system without disorder (dU = 0), the leading eigenvalue crosses one at
the transition temperature Telean — (08¢t In the disordered system, T, is reduced,
although the reduction is only significant for dU = 0.5. One sees that as the disorder
strength is increased, T’ decreases. It therefore must be concluded that T is suppressed
by disorder in the interaction strength.

DCA++ Short Summary. In Q2, 64 disorder configurations were computed over 16
cluster sites with DCA++. The computation utilized 7808 PEs for 25339 seconds. In Q4,
256 = 4 * 64 disorder configurations were computed on 4 * 7808 = 31232 PEs for 23791
seconds. It is observed that as the disorder strength is increased, Tt decreases. It there-
fore must be concluded that 7. is suppressed by disorder in the interaction strength.
This is a significant result.

0.2.4 GYRO analysis

GYRO returned benchmark data in both Q2 and Q4 for 10 and 20 timestep runs so that
the cost of their production runs could be deduced by analysis since there is a small
(albeit nonlinear function of ) cost of startup each run prior to entering the time evo-
lution phase that dominates the complexity of a run. Table[d] includes the benchmark
information for the 10 and 20 time step runs from both Q2 (1 = 30) and Q4 (u = 40)
benchmarks.

Thus, the normal work signature for 10 timesteps in GYRO can be deduced by tak-
ing the differences between observables measured in the 20 and 10 timstep runs. The
differences are presented in table[[].
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Problem Hardware | Wall time | Instructions FLOP
4 — 30, 10tmesteps | 4608 PEs 51.78 s 6.6444e14 | 2.1869e14
u = 30,20tmesteps | 4608 PEs 69.01s 8.8854e14 | 2.8701el4
= a0, 10tmesteps | 24576 PEs | 1095.82's 4.4377e16 1.3768el6
w— 40, 20tmesteps | 24576 PEs | 1248.58 s 5.5680e16 1.9856e16

Table 6: GYRO Benchmark Data for 10 and 20 timestep benchmarks in Q2 and
Q4.

Q2 Q4
Time 17.23 s 152.75s

Instructions | 2.2410e14 | 1.2202e16
FLOP 6.8320e13 | 6.0882e15

Table 7: GYRO benchmark data normalized for 10 physical timesteps and re-
moving startup cost in Q2 and Q4.

Finally, we conduct a weak scaling analysis over the physical parameter ; and the
performance data captured during the GYRO benchmarks. Table[E]

Observable | Ratio(Q4: Q2)
Time 8.865
PEs 5.333
Instructions 54.448
FLOP 89.112

Table 8: GYRO benchmark data Q4 to Q2 ratios for the normalized workflow.

It is noted that the physical resolution was improved by increasing the value of 1,
the magnetic moment per unit mass, from 30 to 40. GYRO researchers estimate the
cost of executing their program at fixed domain size and velocity-space resolution to be
related to pu by cost ~ O(1*?). Here this ratio is 2.737. The value p = 60 is the physical
target value for a pure deuterium plasma problem.

In the Q4 benchmark, the distribution function was discretized over 3.9 billion grid-
points as compared to 69 million gridpoints in Q2 increasing both the domain and
velocity-space (as well as other grid observables) resolution of the simulation neces-
sary to treat the ion-scale modes that dominate the transport physics. The ratio of the
number of gridpoints that must be evaluated each time step in the respective bench-
marks (3.9¢9/69¢6 ~ 56.521) accounts for the increased complexity reported in table

Compared to the weak scaling factor (as deduced by the increased hardware) of
5.333 it is noted that GYRO exhibits exceptional weak scaling on jaguar. Indeed, note

that % ~= 6.142 > 5.333. (make the same analysis w/ FLOP counts

and it is seen that there is an increased floating point work rate in the Q4 run, that

FP.OP/TIME(Q4) _ _
FP.OP/TIME(Q2) ~— 10.052)

GYRO Short Summary. The GYRO summary is made for the normalized workload
(removing the initialization cost). In Q2, 69 million grid points to resolve the domain

is
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and velocity space were evaluated for 10 time-steps with the magnetic moment per unit
mass p = 30. The computation utilized 4608 PEs for 17.23 seconds. In Q4, 3.9 billion
grid points represented the domain and velocity space and with a magnetic moment per
unit mass p = 40. The Q4 benchmark utilized 24576 PEs for 152.75 seconds to compute
10 physical time-steps. The target physical value is j» = 60 to resolve a pure deuterium
plasma problem.

0.2.5 PFLOTRAN analysis

From table[H] it is noted that from the machine perspective PELOTRAN demonstrated
weak scaling by increasing the spatial resolution of their problem from dz = dy = 2.5m
to dz = dy = 2.5/v/2m. (in each case 6z = .1667m)

This corresponds to a spatial grid of the Hanford 300 area that has 540 x 1000 x
120 := 64, 800,000D0F's in Q2 and 764 x 1414 x 120 := 129,635, 520D0F's in Q4.
The increase in spatial resolution helps to separate numerical and physical convergence
issues the velocity flow fields.

Observable | Ratio(Q4 : Q2)
DOEF 2.005
Time 1.14

PEs 2

Instructions 2.2668

FLOP 2.217

Table 9: PFLOTRAN benchmark data Q4 to Q2 ratios.

5.006-03
400603 A\ N
300603 i

200603

1.00E-03

Z Velocity (m/hr)
53
~

0.00E+00
-1.00€-03
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—Q@3V: —-4Vz

Figure 2: PFELOTRAN. Comparison of the z velocity in Q2 (blue) and Q4 (red)
runs.

The fact is that, on a factor of two more processes, the Q4 benchmark computed

2.2668 more instructions in 1.14 more time than in Q2 (e.g. 22125 ~ 1.996 -compared to

2).
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By increasing the number of total degrees of freedom, the fidelity of the computed
velocity fields is also improved. To test the improvement in the solution, the velocity
was compared between runs Q2 and Q4. The z- and y-velocities were very similar indi-
cating convergence. However, slight changes were present in the z-velocity, especially
in the peak z velocity. This is shown in Figure[l These peak velocities have the po-
tential of significantly impacting uranium transport at the Hanford 300 Area, the solu-
tions from which are used to assess risk to the environment (i.e. neighboring Columbia
River).

PFLOTRAN Short Summary. In Q2, a 540 x 1000 x 120 spatial grid of the Hanford
300 area was computed utilizing 4000 PEs for seconds. In Q4, the spatial resolution was
refined to a 764 x 1414 x 120 spatial grid of the Hanford 300 area was computed utilizing
2 * 4000 = 8000 PEs for seconds. A physically relevant difference in the z-velocities of
the contaminant flow fields was observed as a result of the improved resolution -that
which may significantly impact the uranium transport in the area and therefore the risk
assessment to the environment of these flows.

0.2.6 Tools and How to Use Tools for Scientific Discovery

The acceptability of computed results is defined by the problem. In OASCR’s Joule soft-
ware exercises this FY, the complexity of executing the problems was directly deduced
according to machine events measured with supported system software on the target
platform. Knowing or having an estimate of the theoretical complexity of the problem
is helpful but is often not the case in many of DOE’s applications. In any case, the com-
plexity of the problems we can study or solve computing is bound by the hardware and
it would be nice to have a method for calibrating the complexity of software instances
for certain problems. For instance, one could then order the problems according to their
actual computability and match them to target platforms and machine scales.

A detailed example may help here. Suppose our application problem is to have a
computer program that executes (on Jaguar) the common math operation C' < oAB +
BC where A, B, C are all rank two arrays of double precision, complex numbers with
dimensions A € [m,n] , B € [n,p], C € [m,p] and «, 3 are double precision, com-
plex numbers. The problem, P(m,n,p), has complexity that is well described by the
storage demands, O(mn + np + mp + 2) complex numbers, and floating point operation
count, P(m,n,p) ~ O(8mpn + 13mp). This problem’s complexity (like all program
instances) can be calibrated with machine capabilities (even if we did not have a theo-
retical estimate) by counting the instructions and specifically floating point instructions
completed to execute an instance on Jaguar.

To further simplify the remainder of this discussion, let m = n = p. In this case
the theoretical complexity of P(n) is ~ O(3n? 4 2) complex numbers and ~ O(8n® +
13n?) floating point operations. (In the real number case, the problem floating point
complexity form = n = pis P(n) ~ O(2n® 4 2n?) and the storage becomes O(3n” + 2)
real numbers.) Please look at figure[d] since the data presented there is used in this
discussion. The figure presents the process count and measured total instructions, total
floating point instructions, and execution time (measured with the PAPI software) for a
handful of instances of P(n) on Jaguar.

Hardware Events. The first thing to check is the quality of the counts returned by
the tool. Consider first, P(n = 2048). The theoretical complexity of this instance is
P(2048) = 6.877400269¢10 FLOP for the complex representation and when executed
with one process, the tool measured 69084381184 FLOP. The difference is less than a
half percent. The theoretical complexity in the real case is P(2048) = 1.718825779¢10
FLOP and the measured count was 17251172352 F LOP. The difference is less than a
half percent. Next, consider P(8n = 8(2048) = 16384), which is an example of increas-
ing the problem parameter n by a constant factor -here a factor of 8. The theoretical
complexity for the complex representation is P(16384) = 3.518786175¢13 F'LOP and
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the measured count was 3.65606E + 13F LOP for eight process execution. The differ-
ence is ~ 3.75%. It is noted that the difference increased as the number of processes
increased, an overhead incurred due to concurrency and organizing the computation
in the distributed environment. In fact the many-process and single process algorithms
for our problem are quite different -the parallel version being more complicated. The
important feature for the user is that the parallel version completes execution faster.

Performance. In theory each Jaguar cpu-core can execute 412 LOP 4t rate 2.19H z

cle

for a peak performance (ignoring many realistic chip features such as memory capac-
ity, bandwidth, and latency) of 8,400,000.000FLOP  _ g 4c9 FLOPs. Thus, a lowest

second

bound on the time required to execute the complex representation of P(n = 2048) is
8*20483+1 320482

e seconds = 8.49seconds. The example program ran in 9.999seconds
and we conclude that the program did not execute the floating point operations at the
ideal rate -nevertheless, one now has insight as to the efficiency the program executed

on the target. (S50 ~ .849) Yes, for this problem the efficiency of productive work

is impressive as expected since O(n?) work is performed on each O(n?) operands.
For the parallel, 8 PE , n = 16384 case, the lowest bound on the time to execute the

2048)3 411 2048)2
8+ (8%2048)° +13%(8x2048) seconds —

complex representation of the problem is taken to be R i
523.628seconds. The example program ran in 686.7seconds. (222228 ~ 762 -despite
the overheads involved in the parallel algorithm , the performance is quite impressive)

Scalability. The next thing to address is scalability of our program. One way to
talk about this is from the problem perspective, in other words consider how execution
time and resources change as the parameter that dictates our problem, n, is increased.
The figure can again be used. For example, does our problem scale linearly in the weak
scaling case? We already know that it does not, but this is also clear from the data for
computing the complex version of the problem for n=2048 and n=16384=8*2048 on 1
and 8 processes respectively. If the problem did scale linearly with n, then the compute
times would be the same (or within a few percent difference) and they clearly are not.
It is noteworthy that the ratio of the complexity of these problem instances is not linear,

%ﬁ% ~ 511.64 ~ 8(= 512) # 8. The cubic term dominates the scaling
behavior, as expected. Now, in consideration of the language of the metric, suppose we
wanted to execute the larger problem in the same compute time. To obtain a good guess
for the ballpark of cpu-cores necessary to satisfy this constraint, solve

8 % 16384° + 13 * 16384%[FLOP]

AFLOP
cycle-core

=TIME,—2048 = 9.999seconds

- 2.1e9[cycles/second) - k[cores]

for k cores. We find that to satisfy the language of the metric requires ~ 419[cpu — cores|
or PEs in theory. For many DOE funded applications, the complexity of the original
problem (as opposed to the larger one) is so large to begin with in process count that it
is not practical to compute the corresponding larger problem simply due to not having
a sufficient increase in computing power (PEs) in hardware to support the demand. In
this case, the problem’s complexity is calibrated in a linear weak scaling mode.

Finally, consider the context of constraining the multiplication problem to be stud-
ied in a linear weak scaling mode. The weak scaling constraint for this problem is

8nds + 13ngs [FLOP] B 8na + 13ng, [FLOP]
APLOL 9 109[Hz] - kga[cores] — —2ELOL_ .9 1e9[Hz] - kgo[cores]

cycle-core cycle-core

or
8nds + 13ngy 8nds 4 13nd),

kqa ko2
and we want the Q4 problem to be larger than the Q2 problem by factor v > 1. Thus,
877%4 + 137'%4 = 7(8n3Qz + 137‘%2). Combining these we can solve for the correct num-
ber of cores (PEs) to achieve the outcome, kqga[cores] = vkga|cores], as well as solve

[seconds] = [seconds]
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C<2AB+bHC
| process , dgemm() smro omer s e
N 1024 2048 409 8192
T[s] 0314 2548 21.978 [74.85
INS |717503641 13700971039 [.09391E+11 8.7426E+1 |
FLOP 2156920832 17251172352 |.37993E+11 |.10387E+12
| process , zgemmi() oiienny ot
N 1024 2048 409 8192
T[s] |.238 9.999 79615
INS 6871120592 54839796617  |4.38202E+11
FLOP 8639217664 69084381184  |5.52558E+11
6 processes [2x3] nb=80 , pzgemm()
N 1024 2048 409 8192 16384 epe)
T[s] 0340 224 15.904 124.33 686.7
INS 9497229846 66454914633 (4.97548E+11 |3.88845E+12 (3.06305E+13
FLOP (8932819064 |71433191544 (5.71348E+11 |4.57031E+12 (3.65606E+13

Figure 3: The figure presents a check of the PAPI software tool on the target
platform. The operation is the BLAS 3 kernel for the general product of ma-
trices, C' «+ aAB + BC. The theoretical complexity of the operation is stated
as well as the total instructions and floating point instruction counts collected
directly with PAPI for a handful of instances. The agreement of the measured
counts with our theoretical estimate is outstanding.

the cubic polynomial equation 8nd, + 13ng, — constant = 0 for nqa to obtain the ap-
proximate problem size where constant := v(8ng), + 13ng,) and ng2 is chosen by the
user. Thus, we know how to initialize the parameter of our problem in both Q2 and Q4
to achieve the scaling result as projected onto the linear scaling model.

It is concluded that the tool provides a powerful instrument for understanding the
interaction of our software with the system. It remains the case that the benefit of in-
creased computing power must be interpreted as to its value from the perspective of
the problem domain.



Computational Science
Capability: DCA++

0.3 Introduction

0.4 Background and Motivation

Recent experiments have shown that nanoscale charge and spin inhomogeneities
emerge in a number of cuprates. Based on these findings, it was proposed in
the literature that inhomogeneities play a major role in high-temperature su-
perconductivity. The results of DCA++ calculations will be usefull for study-
ing the role of inhomogeneities in the pairing mechanism of the 2D Hubbard
model and answer such questions as: Do inhomogeneities act to increase or
decrease the critical temperature Tc? Do they enhance, suppress or even mod-
ify the pairing mechanism? Is there an optimal inhomogeneity that maximizes
Tc? Technologically, especially the last question is of great importance since
one could potentially use the knowledge gained from these runs to artificially
structure cuprate based materials with higher transition temperatures. Num-
merical studies of disordered systems will help to clarify one of the most im-
portant and timely questions in high-temperature superconductivity research,
and thus will have high impact in this field.

0.5 Capability Overview
0.5.1 Physical Model

The essential features of the cuprates were recognized soon after their discov-
ery in 1986 and summarized in a paper by Anderson in 1987 [Anderson1987]:
(1) the structural units are the two-dimensional CuO; planes (Fig. Bh), and
(2) the superconductivity is created by doping these planes that would oth-
erwise be a Mott insulator with charge carriers (electrons or holes). Zhang and
Rice pointed out [Zhang1988] that due to the strong on-site coulomb repulsion,
these carriers form a localized singlet state consisting of the Cu d,2_,2 orbital
hybridized with the respective p, and p, orbitals of the neighboring O atoms
(Fig. Bb). These considerations lead to a remarkably simple model descrip-
tion, the two-dimensional (2D) Hubbard Model, in which the carriers can hop
between their nearest neighbor sites on a square lattice with transition ampli-
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tude ¢ and interact through an onsite Coulomb repulsion U (Fig.Bk). Due to the
strength of the Coulomb repulsion (U ~ 5—10eV 2 8t), the sites will be mostly
singly occupied, hence leading to the formation of atomic moments due to the
spin 1/2 character of the carriers. Furthermore, because of the Pauli exclusion
principle for Fermions, which precludes double occupation of a site with two
carriers of the same spin orientation, the magnetic moments on neighboring
sites will tend to order antiferromagnetically in order to minimize the kinetic
energy.

Figure 4: (a) The crystal structure of LaoCuQOy, a typical cuprate, where black,
red, and blue spheres represent Cu, O, and La, respectively. (b) The CuO,
plane with outlines of the Cu d,>_,. and O p, and p, orbitals. Also shown in
full color is the Zhang-Rice singlet state that forms from hybridization of the Cu
orbitals with the neighboring O orbitals (see text). (c) Pictorial representation
of the single band 2D Hubbard model with on- site Coulomb repulsion U and
inter-site hopping .

Our simulations employ a quantum cluster method known as the Dynami-
cal Cluster Approximation (DCA) [Hettler1998,Maier2005] in conjunction with
the Hirsch-Fye QMC (HF-QMC) algorithm [Hirsch1986]. The approach in these
simulations is to solve the quantum many-body problem at the atomic and
nano-scale exactly with QMC, and to account for the macroscopic length scales
within a mean-field approximation by self-consistently and coherently embed-
ding the cluster solution into an effective medium. In the limit of infinitely
large clusters, the DCA /QMC recovers the exact solution.

The DCA++ code implements the DCA/QMC and other quantum cluster
methods in the framework of generic programming techniques and allows for
effective extensions of the models. In particular, here we focus on an exten-
sion of the model that will allow us to study models with random disorder or
other types of nano-scale variations of the effective coulomb interaction. These
extensions are motivated by recent experiments that have found spatial vari-
ations of 7. and even identified local regions in which the signatures of su-
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perconductivity (superconducting gap in the excitation spectrum) persisted to
temperatures well above the macroscopically measured 7. [Gomes2007]. With
new and much larger supercomputers, a systematic study of the disorder ef-
fects on large clusters will be possible.

0.5.2 Numerical Method

A comprehensive review of quantum cluster methods and the DCA can be
found in a recent review article [Maier2005], and a detailed description of the
DCA/QMC algorithm has been given in reference [Jarrell2001]. We limit our
discussion of the DCA /QMC method here to a brief overview.

We are interested here in the 2D Hubbard model with atomic scale disor-
der in the Coulomb interaction parameter U. The Hamiltonian operator of a

particular distribution v of onsite interaction {Ui(y)} is conveniently written in
second quantized notation

Y = =S tclcio + > U nigni, (©)

1j0

where the operator ¢! (¢;,) creates (annihilates) a particle with spin ¢ on site
i, tij is the hopping amplitude between sites, and n,, = c|_c;, is the density
operator. The first part of this Hamiltonian is usually refered to as the non-
interacting part, Ho = — 3 , tj; G

The basic idea in DCA is that quantum correlations only have to be treated
explicitly within a cluster of N. atoms, and that all correlations outside this
cluster can be treated in a mean-field way, thatis, the system outside the cluster
is represented by an effective medium. In this approximation, the self-energy is
fully described on the set of coarse grained k-points K, which correspond to the
lattice Fourier transform of the cluster. There are N, such k-points in the Bril-
louin zone and we introduce M (k), a function that maps every k-point of the
Brillouin zone onto the nearest coarse grained point K. Within the DCA, and
assuming that the self-energy (K, z) can be somehow computed, the Green
function can be written as

Gk,z) = [z—colk)—S(M(k),2)]". @)

In practice, this function is represented on a discrete but dense uniform mesh
of NV k-points in the Brillouin zone. In the first iteration of the DCA/QMC
algorithm, one usually starts out by setting 3 to zero or by using a self-energy
that has been computed with a computationally inexpensive approximation
(such as second order perturbation theory). One now proceeds by computing
the Coarse Grained Green function

G(K,z) = % > [Z—EO(K—F/;)—E(K,Z)]_I, (8)
k=K-+k

and with it computes the cluster excluded Green function of the effective medium

GI(K,2) = [G‘I(K,znz(z(,z)r. )
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Note that this cluster excluded Green function is only equal to the non-interacting
Green function Gy(k, z) of the previous subsection in the limit of an infinite
cluster size, i.e., when N, = N — oo and the self-energy is exact. How-
ever, if we lattice Fourier transform G{ (K, z) into real space, the resulting
real space cluster excluded Green function G{(X; — Xj, z) plays the role of
the non-interacting real space Green function of the embedded cluster [z —
Ho(Xi, Xj;2)]7'. (Note that when we solve the quantum many-body problem
on the cluster the {X;} denote the sites of the cluster and are therefore a sub-
set of {z;}). Here, Ho(X;, X;; z) describes the dynamics of the electrons on the
non-interacting cluster and their time-dependent excursions into the effective
medium. The next step in the DCA algorithm is to use an adequate quan-

tum cluster solver to determine the cluster Green function G (X, X, z) fora

particular configuration {U, i(y)} of on-site Coulomb repulsions. The configura-
tionally averaged cluster Green function is given by

Ng
1
GC(XZ —Xj,Z) = Fd E Ggu)(X“XJ,Z) (10)
v=1

Note that because the cluster excluded Green’s function is the lattice Fourier
transform and since we average over all configurations (for example if we have

n possible values of U per site we would have N; = n”e configurations {U, i(") b,
the cluster excluded Green function will have periodic boundary conditions
and can be lattice Fourier transformed into G.(K, z). The new estimate to the
self energy is given by

Y(K,z) = Gy'(K,z)—G YK, 2), (11)

and can be used to compute a new cluster excluded Green function with equa-
tion [@. The DCA method is iterated until the self energy converges. With a
converged self-energy, one can compute the Green function G(k, z) of the sys-
tem as well as many other quantities needed to analyze the solutions of the
Hubbard model.

Quantum cluster methods such as the DCA map the problem onto an effec-
tive cluster self-consistently embedded in a mean-field. The effective cluster
problem is solved with a massively parallel Hirsch-Fye quantum Monte Carlo
(QMCQ) algorithm. Along the QMC Markov chain, measurements of physical
quantities such as the single-particle Greens function and two-particle correla-
tion functions are performed. Between the measurements, the Greens function
is updated using a Dyson equation. The majority of the CPU time of a typ-
ical DCA QMC simulation is spent in the Greens function updates and the
measurements. These two inner loops are highly optimized to run efficiently
on the NCCS machines. The Greens function updates are given by a vector
outer product, This computation is optimized by delaying the update, thus
effectively replacing the vector outer product by a slender rectangular matrix-
matrix multiply. This allows us to perform the Greens function update very
efficiently with the BLAS level 3 call DGEMM. The other CPU intensive task is
the measurement of two-particle correlation functions. In the QMC technique,
this reduces to evaluating products of Greens functions which are optimized by
transforming from space-time to reciprocal space and frequency. These Fourier
transforms are handled using the BLAS level 3 call ZGEMM.
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0.5.3 Software Implementation

The two inner loops in the Green’s function updates have previously been op-
timized to run efficiently on the NCCS machines: The Greens function updates
are given by a vector outer product, Gc¢ = Gc¢ + a * b, where the Greens func-
tions G'c and Gc are matrices of size Nt x Nt. To optimize this computation,
we delay the update, thus effectively replacing the vector outer product by a
slender rectangular matrix-matrix multiply for matrices of size 32 x Nt. This
allows us to perform the Greens function update very efficiently with the BLAS
level 3 call DGEMM. Previously, on the Cray X1E we experienced up to a 5-fold
speedup as a result of the delayed updates.

The other CPU intensive task is the measurement of two-particle correlation
functions. In the QMC technique, this reduces to evaluating products of Greens
functions which are optimized by transforming from space-time to reciprocal
space and frequency. These Fourier transforms are handled using the BLAS
level 3 call ZGEMM and therefore run at speeds near peak performance.

The QMC algorithm is parallelized in the standard way for Monte Carlo
methods by distributing the Markov chain onto many processors. Several in-
dependent, shorter Markov-chain walks on different processors are performed
and the final result is obtained by averaging the results of each walk using MPL
Apart from the fraction of the walk required to achieve equilibrium, the result
is an almost perfectly parallel speedup with an increasing number of proces-
sors. This arises because no communication is required in the inner loops of
the code. As a result, the code scales to several hundreds of processing units
with almost ideal speedup.

The DCA++ code is written in the C++ programming language using generic
programming models like the C++ Standard Template Library and the Psi-Mag
toolkit. BLAS libraries are called for dense linear algebra computations in the
inner loops of the code. The MPI library is used for parallelization and com-
munication.

0.5.4 Execution Performance
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0.6 Metric Problem

0.6.1 Intent

Present understanding of physical effects contributing to the behavior of high-
Tc supercondutors require the investigation of models including disorder. The
total number of disorder configurations Ny is proportional to 2V¢, where N,
is the number of cluster sites. The metric is intended to show the scaling of the
disorder configurations that are accessible during a fixed wall clock time with
the number of available compute nodes. The problem chosen here is represen-
tative of production runs, but the number of Green’s function measurements
has been reduced to a number that allows the timing runs to finish in approxi-
matly one hour of wall clock time. The ability to weakly scale to larger numbers
of disorder representations will enable us to obtain the disorder dependence of
the superconducting transition temperature with increasingly better statistics
as the available machines grow in size.

0.6.2 Model parameters

We choose the following parameters for the Hubbard model to be investigated
in these scaling investigations:

e Number of sites: N. = 16
e Number of time slices: N; = 150

e Hubbard U: U € {0.5,1.5} randomly chosen for a disorder configuration.

Number of disorder configurations: Ny;s = 16

Number of selfconsistent measurements: 20
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e number of warm-up steps: 40

The metric to establish the scaling to larger disorder counts will keep all the
input parameters to the probem fixed and only vary Ng;s and determine the
CPU-time per disorder configuration #4;,.

y . Nery Xtwan
dis Nyis

Where N¢ py is the total number of MPI processes/ cores for the run, t,,q4; is the
wall clock time for the run as return by calls to PAPI _get _real _usec() atthe
begining and end of the DCA++ main routine. During the time measurements
the calculation of self energies was excluded since this is a fixed amount of
computation independent of the number of selfconsistent measurements and a
production run will require ~ 10 times the measuremts performed during the
benchmark runs.

0.7 Metric Baseline

0.7.1 Results and Interpretation

The code was run with the model parameters described above on April 3, 2008
on 1956 Opteron quad core nodes on the NCCS jaguar system with one MPI
process per core. This results in a total of Nopy = 7824 MPI processes and
489 processes pre disorder configuration. The runtime for the code returned
by PAPI _get _real _usec was tyqu = 3336.22s = 55min 36.22s. These number
result in .

thaseline — 1631411.58s = 453h 10min 11.58s.

In addition PAPI was used to collect the number of real cycles N, and the
folloing events:

e PAPI_TOT.INS The total number of instructions N,
e PAPI_FP_OPSThe total number of floating point operations Nz p

¢ RETIRED.SSEOPERATIONS:DOUBLIADDSUBOPS:DOUBLEMULOPS:DOUBLEDIV _OPS:ORTYPE
The number of double precission floating point operations Nyrp

e RETIRED.SSEOPERATIONS:SINGLEADDSUBOPS:SINGLE_.MULOPS:SINGLE_DIV _OPS:ORPTYPE
The number of single precission floating point operations Nyrp

We accumulate these counters over the runtime of the code and over all
MPI processes and find

The number of single precission operations in the code is identically zero,
as expected, since all calculations are performed in double precision. Cur-
rently we are in the process of identifying which parts of the code could ben-
efit from using single precission arithmetic to reduce the computation time re-
quired. With these counters we can establish the performance of the code by
dividing by the run time. This results in an execution speed of Ninst/twau =
21.413 x 10'2inst /s or 2.737 x 10%nst/s per core and a floating point perfor-
mance of Npp/tyau = 19.785 x 10'2FLOP /s or 2.529GFLOP /s per core which
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Table 10: results ... results ... results

Np | Ncores Neye Ninst Ngp tuser
BF=00-Q2 | 64 | 7,808 | 1.0725x 1077 | 1.2290 x 107 | 1.0372 x 107 | 6,540
G=120-Q2 | 64 7,808 2.3658 x 1017 | 2.7490 x 10'7 | 2.4029 x 10'7 | 14,427
G=150-Q2 | 64 7,808 XX x 107 XX x 107 XX x 107 XX
8=90-0Q4 | 256 | 31,232 | 4.2347 x 1017 | 4.7357 x 1017 | 4.0821 x 107 6,484
B=120-Q4 | 256 | 31,232 | 9.1204 x 10'7 | 1.0397 x 10'7 | 9.4308 x 107 | 13,946
B=150-Q4 | 256 | 31,232 | 1.5590 x 10'® | 1.9300 x 10'® | 1.8126 x 10'® | 23,791

corresponds to 30.1% of the theoretical peak of 8.4GFLOP/s (4 floating point
operations/cycle at 2.1GHz).

This scaling enabled us, in further calculations not benchmarked here, to
investigate the transition to a superconducting state with d-wave symmetry.
The order parameter that signals a transition to this state is given by

AL =" gk)c) ety | (12)
k

where g(k) = cosk, —cosk, is a d-wave form-factor. In linear response theory,
the pair-field susceptibility formed from this order parameter

B

Py = / dr (T, Aa(7)AL(0))
0

(13)

diverges at the transition temperature 7. to the d-wave superconducting state.
Using the Bethe-Salpeter equation, the pair-field susceptibility may also be
written in terms of a particle-particle vertex function I'??

Py = P§ + PITPPP,. (14)

Here, PU? and I'PP are matrices of size NL x NL, where N is the number of
lattice sites and L the number of Matsubara-frequencies, P is the pair-field
susceptibility of the non-interacting part of the model and the right hand side
contains an implicit sum over the matrix elements. In the DCA, the vertex
function I'?? is approximated by its corresponding cluster quantity which is a
smaller matrix of size N.L x N.L. This matrix is calculated from the cluster
pair-field susceptibility which is measured in the HF-QMC process in the last
DCA iteration. Since Eq. ([4) can be written as

Py

Py=—d
¢ 1T Py

(15)

one can conveniently determine instabilities by calculating the eigenvalues and
eigenvectors of the pairing matrix I'??P), i.e., solving

_%ZFPP(Kv K/)Pg(Kl)ﬁba(K/) - )\aﬁba(K)- (16)
K
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The susceptibility diverges when the leading eigenvalue )\, crosses one which
determines T,.. The symmetry of the ordered state is then given by the K de-
pendence of the corresponding eigenvector ¢ (K).

At low temperatures the leading eigenvector has d,:_,2-symmetry. The
leading eigenvalue is shown as a function of temperature in Fig.
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Figure 5: The leading eigenvalue )\, of the Bethe-Salpeter equation, Eq. ([{6),
calculated on a 16-site cluster for U; = 4t(1 + &;dU), where &; is a random
number with value &1 for three different values of disorder.

In the system without disorder (dU = 0), the leading eigenvalue crosses
one at the transition temperature 7/*" = (.08¢. In the disordered system, 7.
is reduced, although the reduction is only significant for dU = 0.5. One sees
that as the disorder strength is increased, T, decreases. It therefore must be
concluded that T is suppressed by disorder in the interaction strength.

0.7.2 Baseline input
#geometry 2d
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#SizeOfTheCluster 4,2,0,4,640000
#NumberOfTimeSlices 90
#SizeOfUpdateBlock 32
#lnverseTemperature 90.
#outputfilename output.A

#Ntr 16

#HubbardUType random
#HubbardUConfigs 64
#HubbardUCentral 1.0
#HubbardUDelta 0.5
#BareOrbitalEnergy 0.16910238
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4
#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#auto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#iosft 1

#density 0.90

#AdjustDensity 1

#npt 1

#initsigma filesigma_beta90.dat
#initdelta 0.001

#usedgemv 1

#usedgemm 1

#geometry 2d

#SizeOfTheCluster  4,2,0,4,640000
#NumberOfTimeSlices 120
#SizeOfUpdateBlock 32
#lnverseTemperature 120.
#outputfilename output.A

#Ntr 16

#HubbardUType random
#HubbardUConfigs 64
#HubbardUCentral 1.0
#HubbardUDelta 0.5
#BareOrbitalEnergy 0.16809740858455499
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
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#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4
#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#iauto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#iosft 1

#density 0.90

#AdjustDensity 1

#npt 3

#initsigma filesigma_betal20.dat
#initdelta 0.001

#usedgemv 1

#usedgemm 1

#geometry 2d
#SizeOfTheCluster 4,2,0,4,640000
#NumberOfTimeSlices 150
#SizeOfUpdateBlock 32
#lnverseTemperature 150.
#outputfilename output.A

#Ntr 16

#HubbardUType random
#HubbardUConfigs 64
#HubbardUCentral 1.0
#HubbardUDelta  0.50
#BareOrbitalEnergy 0.16791218624384005
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4

#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#iauto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#iosft 1

#density 0.90

#AdjustDensity 1
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#npt 3

#initsigma filesigma_betal50.dat
#initdelta 0.001

#usedgemv 1

#usedgemm 1

0.7.3 Q4 runs input

Note that the t woparticle option specified for the Q4 runs was the default in
the DCA++ code during the Q2 runs.

#options twoparticle

#geometry 2d
#SizeOfTheCluster 4,2,0,4,640000
#NumberOfTimeSlices 90
#SizeOfUpdateBlock 32
#lnverseTemperature 90.
#outputfilename output.B

#Ntr 16

#HubbardUType random
#HubbardUConfigs 256
#HubbardUCentral 1.0
#HubbardUDelta 0.5
#BareOrbitalEnergy 0.16910238
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4
#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#iauto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#osft 1

#density 0.90

#AdjustDensity 1

#npt 1

#initsigma filesigma.l.A
#initdelta 0.001

#usedgemv 1

#usedgemm 1

#options twoparticle
#geometry 2d
#SizeOfTheCluster 4,2,0,4,640000
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#NumberOfTimeSlices 120
#SizeOfUpdateBlock 32
#InverseTemperature 120.
#outputfilename output.B
#Ntr 16

#HubbardUType random
#HubbardUConfigs 256
#HubbardUCentral 1.0
#HubbardUDelta 0.5
#BareOrbitalEnergy 0.16809740858455499
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4
#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#iauto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#iosft 1

#density 0.90
#AdjustDensity 1

#npt 3

#initsigma filesigma.1.A
#initdelta 0.001

#usedgemv 1

#usedgemm 1

#options twoparticle

#geometry 2d

#SizeOfTheCluster  4,2,0,4,640000
#NumberOfTimeSlices 150
#SizeOfUpdateBlock 32
#InverseTemperature 150.
#outputfilename output.B

#Ntr 16

#HubbardUType random
#HubbardUConfigs 256
#HubbardUCentral 1.0
#HubbardUDelta  0.50
#BareOrbitalEnergy 0.16791218624384005
#Tprime 0.0
#NumberOfMatsubaras 800
#FreqType complex
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#lsDisorderPresent 0
#SelfConsistentlterations 1
#SelfConsistentWarmUps 40 40
#SelfConsistentSkip 4
#MaxSkip 40
#SelfConsistentMeas 300
#Bins 122

#iauto 2
#SelfConsistentConvergence 0.75
#DcaMinError -1

#ifilter O

#icond 1

#iosft 1

#density 0.90

#AdjustDensity 1

#npt 3

#initsigma filesigma.1.A
#initdelta 0.001

#usedgemv 1

#usedgemm 1
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Computational Science
Capability: GYRO

0.8 Introduction

0.9 Background and Motivation

The most promising and aggressively studied concept for power production by
fusion reactions is the tokamak. At the present time, magnetic fusion energy re-
search has reached the point where construction of a tokamak burning plasma
facility is prudent. To this end, on 21 November 2006, seven participants (the
European Union, India, Japan, People’s Republic of China, Russia, South Ko-
rea, and the USA) formally agreed to fund ITER [?]. The ITER project, based
in Cadarache, France, is anticipated to last for 30 years (10 for construction
and 20 for operation) with the first plasma expected in 2016. ITER will be de-
signed to produce approximately 500MW of fusion power sustained for up to
400 seconds. To achieve this design target, thermonuclear heating must balance
transport and radiation losses. However, despite the advances made in the un-
derstanding and control of tokamak plasmas, various theoretical and technical
uncertainties remain in reliably predicting confinement properties and perfor-
mance of a reactor-scale devices. Within the worldwide fusion community, it is
widely agreed that the gyrokinetic-Maxwell (GKM) equations [?, ?] provide a
solid foundation for the first-principles calculation of turbulent tokamak heat
and particle transport. For years, the numerical solution of the nonlinear GKM
equations has been a computational physics “Grand Challenge”. Development
of GYRO was partially funded by the Plasma Microturbulence Project, a fusion
SciDAC project.

Traditionally, long-wavelength, low-frequency turbulence driven by ion-
scale instabilities (ion-temperature-gradient and trapped-electron modes) is
studied separately from the short-wavelength, high-frequency turbulence driven
by electron-scale instabilities (electron-temperature-gradient modes). Recently,
high-resolution, massively-parallel, multi-scale simulations with GYRO have
shown that critical aspects of the physics can be missed or determined incor-
rectly if the electron and ion physics is not properly coupled. For example,
it was found that a popular simplified model of ion physics previously used
in studies of electron-scale turbulence can lead to nonphysical runaway of
electron heat transport. This nonphysical runaway is eliminated when correct
long-wavelength ion physics is self-consistently included. In addition, GYRO
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multi-scale simulations showed that under normal conditions, most of the elec-
tron heat transport arises from large-scale instabilities. However, when these
large-scale instabilities are suppressed by plasma rotation or other processes,
the electron instabilities survive and may dominate the loss of electron heat
from the plasma. A further remarkable finding is that strong turbulence at
long scales can act to reduce the intensity of turbulence at short scales. The
simulations which led to these discoveries were carried out on the Cray X1E
computer at ORNL, with the largest runs taking about a week on 720 multi-
streaming processors.

0.10 Capability Overview

The GYRO code, written primarily in Fortran 90, solves the nonlinear GKM
equations for core ions, electrons and any number of plasma impurity species.
Electromagnetic or reduced electrostatic simulations are possible. The compu-
tational domain can be radially global, with input data taken from an experi-
mental database, or radially local, in order to accurately study isolated para-
metric effects. Both partial and full torus simulations are possible, although
the latter is rarely (if ever) necessary to obtain a converged result. GYRO
uses a five-dimensional Eulerian grid and advances the system in time using a
second-order, implicit-explicit IMEX) Runge-Kutta (RK) integrator [?]. There
is also an option to use a fourth-order explicit Runge-Kutta time advance.

0.10.1 Physical Model

The Gyrokinetic Model

The plasma configuration is represented by the single-particle kinetic distribu-
tion f,, where o is a species label, and is written as a sum of an equilibrium
part, Fo,, and fluctuating terms:

fﬂ(vanu’at):FOU(XvE)—i_(SfU(XaEvNat)7 (17)

where the perturbed distribution, ¢f, is given by

6fa(x7 E, 122 t) . _%FOU |:6¢(Xv t) - ga5¢(R7 t) + % ga(sAH (Rv t) +h0’(R7 E, Hy t) .

” (18)
Above, x = R + p is the particle position, p = b x v /o is the gyroradius
vector, (., = z,eB/(myc), R is the guiding-center position, E, = m,v?/2
is the energy, and p = v? /(2B) is the magnetic moment per unit mass. The
symbol G, denotes a gyroaverage, which can be defined formally as

Goz(R,t) = 7{3—: z2(R + p(a),t), (19)

for any function, z. Fundamental considerations required that the equilibrium
is a local Maxwellian

i nU _E/T(r —
Foo (R, E) = We =n, Fuo . (20)
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In the expression for Fy,, we have ignored a factor of exp(z,e¢®(/T,,). In con-
nection with the equilibrium potential, we assume ¢ d®/dy > ®( in order to
perturbatively account for E x B shearing effects. For normalization purposes
it is useful to note that

/d% Fuo=1. (21)

Magnetic topology

In what follows we adopt the right-handed, field-aligned coordinate system
(1,0, o) together with the Clebsch representation [?] for the magnetic field

B=VaxVy suchthat B-Va=B-V¢Y=0. (22)
The angle « is written in terms of the toroidal angle ¢ as
a=p+v(,0). (23)

In Eqs. @2) and @3), ¢ (as we will show) is poloidal flux divided by 27, and 6
refers simultaneously to (a) an angle in the poloidal plane (at fixed ), or (b) a
parameterization of distance along a field line (at fixed «). In these coordinates,
the Jacobian is

. 1 1
Jv = Vi xVO-Va Vi xV0-Vo
Since the coordinates (¢, 0, o) and (¢, 6, ) form right-handed systems, the Ja-
cobian Jy is positive-definite. In the latter coordinates, the magnetic field be-
comes

(24)

B:VgadeH—%Vﬂwi (25)

Using the definition of the safety factor, ¢(¢), we may deduce

For concreteness, we choose the following boundary conditions for v:
v(y,2m) = —2mq(y) , (27)
v(¢,0) =0. (28)
By writing B in the standard form for up-down symmetric equilibria,
B=VoxVi+ f()Ve, (29)
we can derive the following integral for v:
o
v(00) = ~1) [Ty Vel ab 30)

We remark that in the case of concentric (unshifted) circular flux surfaces, one
will obtain the approximate result (¢, ) ~ —q(1)6.
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Gyrokinetic equation

The gyrokinetic equation for A, can be written compactly as

Ohs

T + (v||15 +vq) VH, +6v-V (Fyo + ho) +Veo - Vhe = C(hs),  (31)

where the new symbols are

U =56 - Loay (32)
25€
HU:hU+T_FOU ga’U; (33)
and the the velocities are
) vﬁ + uB A B 47T1)ﬁ 0 2
Vq = 0B x V —|—QCUB2 x Vp (34)
. C»

VE0 = E b x V‘bo 9 (35)
Vi = 7 b x V0,00 . (36)

o Cc - 0B
6V:§bxngU:VE+UH?. (37)

Various terms can be simplified without refering to the geometry model. Within
the accuracy of the gyrokinetic ordering, we have

o C ~ 6hg 6(1)0
VEO'th—EbXV(I)O'VhG-N—C aaw, (38)
iy OFy, 0(G,U)
0V - VEy, = b xV(GeU) : VEy, ~c— 0 o0 (39)
e Ohy (G,U)  Oho A(G,U)
ov-Vh, = B b x V(G,U) -Vhy ~ ¢ 0 00 C o o0 (40)

Poisson equation

For a multi-species plasma the Poisson equation (including the Debye shield-
ing term) can be written as

—V30¢p =4 ez, 0n, = 4wZezg/d3U 6fy . (41)

In terms of the function k., we can write the expression above as

/d% Fuo (1-G2) 6= ez, /d% Gh, (42)

2
iz

82
T,

1 2
—Evl5¢+;ng

where o runs over all species (ions and electrons).
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Ampere equation

The primitive form of the Ampere equation is
47 47
2 A = —— ] = — = U/dg o - 4
VLé I - EU 5_]“70 - EU €z vy 5f ( 3)

Writing this in terms of &, gives

2
el

L oo e’z 3 vﬁ 2 3. Yl
—EVL(SAH—l—ZnUT—U/d v — Fato G304 = Zeza/d v Goho . (44)

Illustrative form of the Model

The GKM equations have the following illustrative form, in which the fluctu-
ating gyrocenter distribution f is coupled to the the electromagnetic fields, :
of

57 = Laf +Lo(®) + {7, (2)) (45)

Fo = / / dvy dvs (f) (46)

Ly, L, and F are linear operators, and (-) is an operator which takes the aver-
age along a particle gyro-orbit. The nonlinearity, which has a Poisson bracket
structure, appears in the gyrokinetic equation. The function f(r, v, v) is dis-
cretized over a 5-dimensional grid (three spatial and two velocity coordinates),
while the 3-dimensional electromagnetic fields ®(r) = [#, A|] are independent
of velocity. Here ¢ and A are the electrostatic and electromagnetic potentials,
respectively. In order to obtain Eq. @3), one has averaged over the fast or-
bital motion (gyro-orbit) to eliminate the third velocity-space dimension (gyro-
angle). However, this so-called gyro-averaging operation introduces nonlocal
spatial operators, F and (-), perpendicular to the magnetic field.

We remark that simulations normally reach a statistical steady state on a
timescale much shorter than an energy confinement time. In practice, simula-
tions are well into the steady-state regime after about 50,000 timesteps.

Geometry

The effects of cross-sectional shaping in GYRO are treated using the Miller lo-
cal equilibrium model [?]. In the Miller model, nine dimensionless parameters
are employed to describe the local equilibrium: ~ (elongation), § (triangular-
ity), s (magnetic shear), Ry/a (aspect ratio), ¢ (safety factor), ORy/0r (Shafra-
nov shift), s, (elongation shear), ss (triangularity shear) and 3 ,, (normalized
pressure gradient). Note that

. T 0K . 00 ;. 8t OJp
K — — 5 = - W = T . 47
y K Or %= "o Punit B2 .. Or (47)

The shape of a flux surface is specified using the following parameterization

R(r,0) = Ro(r) + rcos (0 + xsinh) , (48)
Z(r,0) = k(r)rsind (49)
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where = arcsind. The Miller algorithm constructs, via a simple computer
program, a local equilibrium with the (R, Z) flux-surface shape given above.
It is to be emphasized that said equilibrium is an exact solution of the Grad-
Shafranov equation. A free parameter in this local equilibrium is the so-called
effective magnetic field strength, Bunit(r) [?]. In practice, Bunis is determined only
with reference to a global equilibrium through the relation

(Z_w - iBunit 9 (50)
roq

where r is the midplane minor radius and ¢ is the toroidal flux divided by 27.
In a large-aspect-ratio, unshifted, circular plasma, Byt () — Bo. The principal
advantage of the Miller equilibrium model, in comparison to a full numerical
equilibrium, is that the shape parameters can be individually varied, thus al-
lowing for systematic studies of the isolated effects of each on the neoclassical
transport. Furthermore, a given local equilibrium can be computed to high
precision at low cost, free of spurious numerical artifacts often found in 2-D
numerical equilibria. In the case of general geometry calculations, it is useful
to introduce the unit gyroradius:

v eBunit (1
o ta where Qo unit(r) = €Bunit (1) )
ca,unit mgcC

pa,unit(r) = (51)

0.10.2 Numerical Method
Parallel Model

We briefly sketch the type of discretization scheme used in each dimension.

e r — i (radius): linear advective derivatives on f are treated with an up-
wind differences, whereas derivatives on fields are treated with centered
differences. The nonlocal operators F and (-) are approximated using
a (banded) pseudospectral technique. The order of all discretizations is
adjustable at run-time.

e 7 — j (poloidal angle): for f, there is no fixed grid in poloidal angle, 6.
Instead, the transformation

v” (’I’, /\, 9) a 8
“Roa(r) 00 — Q(r, /\)5 (52)

is used to eliminate the singularity at bounce points, v (¢) = 0. Here, v
is the velocity parallel along the magnetic field, Ry is the major radius
of the torus, and ¢ is the so-called safety factor. Then, an upwind scheme
in 7 is used to discretize 0 f/07. The use of a 7-grid (leading to a differ-
ent set of points in § for every value of \) for the GK equation dictates
that the Maxwell equations are solved by expansion of fields in complex
finite-elements: ¢(r;,0) = > F (0). The F!, satisfy a complex phase
condition.
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e nior — n (toroidal angle): the toroidal direction (really, the direction per-
pendicular to both the radius, r, and to the magnetic field) is treated in
a fully spectral manner. Note that simulations need not cover an entire
toroidal circuit (0, 27]. In fact, it is normally most efficient to cover a par-
tial torus; for example: n, = 0,10, 20, .. ..

o (A €) — (k,e) (velocity-space): A transformation property under integra-
tion of velocity-space integrals over 6 is used to recast the velocity-space
integration. Then, in both € and A, an exact Gauss-Legendre quadrature
scheme is numerically generated (by nonlinear root-finding) at run-time.
This is different at each radius and for different plasma equilibria.

e nonlinearity: The nonlinear Poisson bracket is evaluated with a conser-
vative difference-spectral analogue of the Arakawa method. This scheme
ensures exact conservation of density and generalized entropy at vanish-
ing time step (independent of grid resolution).

e collisions: Collisions are represented by a second-order diffusive-type
operator in A. This operator is split from the collisionless problem and a
irregular-grid generalization of the Crank-Nicholson method is used.

e time-advance: A 2nd-order IMEX RK scheme is used, with the electron
parallel motion (0/06) treated implicitly. This is exceptionally compli-
cated due to the use of a 7-grid, as well as the presence of the fields in
the advection. However, the implicitness is crucial for the elimination
of a numerical instability connected with pathological electrostatic Alfvén
waves.

0.10.3 Software Implementation
Grid indexing

Eulerian schemes for solving the GKM equations evolve the gyro-center distri-
bution function f(r, 7, nior, A, E), where r is the plasma minor radius, 7 is the
orbit time (a parametrization of the poloidal angle), o, is the toroidal mode
number (a linear quantum number), ) is the cosine of the pitch angle and E
is the energy. Upon discretization of all differential and integral operators, we
solve difference equations for the quantities f(, j, n, k, ), with

i=1,2...,N; (53)
j=12,...,N; (54)
n=1,2,...,Nyn (55)
k=1,2,...,Ny (56)
e=1,2,...,N. (57)

Note that in general there is also a species index, but in the present work we
do not use it for data distribution.

While current supercomputers offer the promise of multi-Tflop/s perfor-
mance, the newest and most powerful of these are based on a distributed-
memory architecture and require efficient data distribution schemes to achieve
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good parallel performance. The prototype object to be distributed in mem-
ory evenly across the entire processor space is the function f(i,,n, k, e). The
distribution of an index across processors is incompatible, however, with the
evaluation of operators on that index. For example, a derivative in r requires
that all ¢ should be on a processor. Even more complicated is the requirement
that some operators require that more than one index be simultaneously on-
processor. For example, the nonlinear convolution requires both i and n to be
on-processor. A summary of distribution requirements is given in Table [Tl

Table 11: Distribution requirements for different code stages (i.e., evaluation of
different operators).

| Stage | On-processor indices |
Linear with field solve ]
Pitch-angle scattering J. k
Energy diffusion e
Nonlinear nn

The obvious tactic is to change the distribution scheme to evaluate different
operators. We will describe a algorithm with uses not only the global commu-
nicator MPI_COMMVORLDor the totality of processors, but two new commu-
nicators, COMMand COMM#vhich define processor rows and columns.

The base distribution scheme is that used for the linear step with field solve

BASE:  f([n],{e,k},i,)) (58)

Fig. @illustrates this distribution strategy in the case of 16 processors — with 4
processors in each of the 4 COMM4%ubgroups, and 4 processors in each of the
4 COMMZ2ubgroups. Here, COMM1Iinks all columns of a given row (horizontal
arrows), and COMMZinks rows of a given column (vertical arrows). The curly
braces indicate a one-dimensional array of stacked indices

{e,k}p:p with p=1,2,..., N, Ny (59)

where

(6_1):p];k1 and k—1=(p—1) mod Ny (60)

The indices {e, k} are distributed along processor columns, the [n] are dis-
tributed along rows, and ¢ and j are stored on-processor. Note that in the
general case, many stacked {e, k} indices will appear in each column. For the
16-processor case shown in Fig. [l we would have {e, k}p forp =1,5,9,...in
column 1, and so on. With regard to columns, however, we make an impor-
tant simplifying assumption and consider the number of rows to be exactly
equal to N,,. This restriction suits our immediate purposes well enough, and
generalization to more than one n per row is reasonably straightforward.



0.11. METRIC PROBLEM L

{6,k}1 {6,/{}2 {6,/{:}3 {6,/{}4
{67 k}5 {€7k}6 {6,k}7

n Z,] <™ Z,] <] Z,] < Za]
! ! ! !
N2 27,7 <™ 27,7 <] 27,7 < Z7]
! ! ! !
n3 Zy] <™ 27] <™ 27] <™ 7/;.]
! ! ! {
Ty 27,7 <] 27,7 <™ 27,7 < Z7]

Figure 6: Base grid distribution scheme, with all ¢, j on processor, n distributed
along rows, and e, k distributed along columns. Data redistribution will occur
only only along rows or columns, thus limiting the all-to-all exchange size.

0.11 Metric Problem
0.11.1 Intent

In tokamak plasmas, performance is limited by turbulent radial transport of
both energy and particles driven by so-called drift-wave instabilities. These
instabilities, which are driven by gradients in the plasma temperature and
density, are unavoidable and will persist in reactor-scale devices. The bulk
of this transport arises from ion-scale instabilities, with time and space scales
comparable to the a/v; and p; respectively (see Table [2). These relatively
large-scale, slow instabilities, driven by ion-temperature-gradient (ITG) and
trapped-electron (TE) modes, can nevertheless coexist with small-scale, fast
instabilities driven by electron-temperature-gradient (ETG) modes. In terms

of the key parameter ;1 = \/m;/me., which is approximately 60 in a pure-
deuterium plasma, the electron space scales are smaller than the ion scales by
a factor of i, while the corresponding time scales ar